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4 ( d )  l 

2 (c )  m 

2 ( b ) 2  

2 ( a ) 2  

x, y, z; ~, y, ~.; 1 / 2 - x ,  y, z; 

l / 2 + x, y, ~(mod  n, n', n") ; 

1/4, y, z; 3/4, y, ~ (mod n, n', n"); 

O,y, 1/2; 1/2, y, 1/2 (rood n, n', n"); 

O, y, O; 1/2, y, 0 (mod n, n', n"). 

La restriction/~ la seule r6p6tition bidimensionnelle 
de translation donne les families de Wyckoff de 
~ m 2 a ,  en remplaqant la lettre z par la lettre t pour 
rappeler le r61e particulier de la troisi~me coor- 
donn6e: 

4 ( d )  l x , y , t ; g , y , t ; 1 / 2 - x , y , t ;  

1 / 2 + x , y ,  ~(mod n, n', 0); 

2 (c )  m l /4 ,  y, t ; 3 / 4 ,  y , / - ( m o d  n, n ' ,0 ) ;  

2 ( a ) 2  0, y, 0 ;1 /2 ,  y, 0 ( m o d n ,  n ' ,0) .  

On obtient les trois types de familles not6s d, c, a 
issus des types de families d, c, 'a  de Pm2a ;  on ne 
peut pas obtenir de families issues du type b de Pm2a 
car ces positions sont toutes situ6es sur des axes 
binaires en dehors du plan ¢r. 

La m6thode de Wood s'6tend sans difficult6 aux 
autres groupes de sym6trie semi-cristallins (2+  
l)-dimensionnels: les r6sultats sont rappel6s dans le 
Tableau 1 sous forme extr~mement condens6e. La 
construction des families de Wyckoff des groupes 
deux-color6s deux-dimensionnels n'offre aucune 
difficult6 5. partir des families de Wyckoff des groupes 
de sym6trie semi-cristallins (2 + 1)-dimensionnels, 
ainsi que nous l 'avons montr6 dans § I. Les r6sultats 
figurent 6galement dans le Tableau 1. 

III. Conclusion 

Par le proc6d6 que nous avons utilis6, on retrouve 
les quatre cat6gories de groupes color6s. 

1 Ore catdgorie: Groupes monoclores. Ces cristaux 

ne comportent  ni familles grises, ni families incolores. 
20me catdgorie: Groupes bicolores vrais n 'ayant  

pas de translation color6e. Cette cat6gorie de cristaux 
color6s poss~de des families de positions unicolores 
et souvent des families grises et des families incolores. 

30me catdgorie" Groupes bicolores vrais ayant des 
translations color6es. Cette cat6gorie admet des famil- 
Ies de positions unicolores et souvent des families 
grises et incolores. 

40me cat~gorie: Groupes gris. Ce type de cristaux 
color6s n 'admet  que des families grises et incolores. 

I1 convient de remarquer qu'un groupe color6 con- 
tient autant de types de families grises que de types 
de families incolores puisqu'une famille incolore est 
la limite d 'une famille grise quand les deux couleurs 
tendent l 'une vers l 'autre. 

L'extension de ces concepts aux cristaux trois- 
dimensionnels deux-color6s n'ottre pas de difficult6: 
ces cristaux sont les projections cotdes de semi-cristaux 
(3+ 1)-dimensionnels qui s '6tendent donc en 
dimension quatre de part et d 'autre d 'un hyperplan 
de dimension trois, la r6p6tition p6riodique inter- 
venant uniquement scion un groupe de translation 
trois-dimensionnel de cet hyperplan; on retrouve 
exactement les m~mes propri6t6s pour les families de 
Wyckoff: families de positions unicolores, grises et 
incolores. 
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Abstract 

The 80 space groups of infinitely extended layers are 
identified as the defining groups for transmission 
electron diffraction symmetries obtained from lamel- 
lar crystals. These layer groups are retabulated using 

a notation which characterizes the symmetries of con- 
vergent-beam diffraction patterns. The new tabulation 
provides a means for determining the three- 
dimensional space group of a particular structure 
from one or more convergent-beam zone-axis 
patterns. This is a two-stage process, involving 
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636 RETABULATION OF THE 80 LAYER GROUPS 

Table 1. Possible symmetry elements of a horizontal two-dimensionally-periodic layer 

Symmetry  elements  for  layer  groups 

I. Vertical symmetry elements 
I. Rotation axes of order 2, 3, 4, 6 
2. Mirror planes 
3. Glide planes with horizontal 

translational components 

II. Horizontal symmetry elements located on 
the central plane 
1 Diad axes 
2. Two-fold screw axes 
3. Mirror plane 
4. Glide plane with horizontal 

translational component 
5. Centre of inversion 

6. Vertical tetrad inversion axis 

Crysta l lographic  
symbols  for  

symmetry  elements  

2, 3, 4, 6, 
m, 

a, b 

2, 
21, 
m, 

_g (a, b, or n) 
I 

C B E D  symmetry  opera tors  

1. Direct symmetries 
Operators which leave 
crystal and incident and 
diffracted rays u.nchanged 

II. Indirect symmetries 
Operators which invert 
the crystal and introduce 
symmetries through 
reciprocity. 

I and II: 4 combines direct and indirect 
symmetries 

determination of a layer-group corresponding to a 
principal zone-axis pattern, followed by identifica- 
tion, where necessary, of the appropriate class- 
equivalent subgroup. For this final identification, the 
three-dimensional extinction conditions, determined 
from an alternative set of convergent-beam zone-axis 
patterns, are required. In terms of standard group 
symbols [e.g. Vainshtein (1981). Modern Crystallogra- 
phy L Berlin: Springer], the one-way interrelation 
between patterns and space groups G 3 ~ G 3 (space 
group analysis) is given. The inverse problem, equally 
accessible from group theory, of providing the interre- 
lation G 3 ~ G32 (pattern symmetry prediction) is left 
for separate tabulation. 

I. Introduction 

The 80 space groups of parallel-sided layers, first 
derived by Alexander & Hermann (1929), describe 
the possible symmetry arrangements for two- 
dimensionally infinite one-dimensionally finite sheets 
which have periodic arrangement in only two 
dimensions; they are therefore known as 'partially 
periodic' groups (see for example Shubnikov & Kop- 
stik, 1974; Vainshtein, 1981). The groups are formed 
by combining the 17 groups of an x-y  plane at z = 0 
with certain three-dimensional symmetry elements, 
namely m, g, 2, 21, T and ~, [International Tables for 
X-ray Crystallography (IT) symbols], located in the 
horizontal plane z = 0 ,  which provides additional 
symmetry relations between the +z and - z  sides of 
the plane. These two categories of symmetry elements 
('vertical' and 'horizontal' with respect to the layer), 
are given in Table 1. 

Recently, we have found the 80 Alexander & Her- 
mann groups to be the defining groups for trans- 
mission electron diffraction symmetries obtained 
from lamellar crystals (Goodman, 1984). Comparison 
of the elements of these groups with those obtained 
independently for convergent-beam electron diffrac- 

tion (CBED) patterns (see for example Tanaka, Saito 
& Sekii, 1983), as shown in Table 1, offers sufficient 
proof that this is correct. In CBED terminology the 
categories of Table 1 correspond to 'direct' and 
'indirect' (or reciprocity-related) symmetry elements, 
with the complication that 4 is not purely one or the 
other since it combines direct (a z-directed rotation 
axis) with indirect (centro-inversionary) symmetry 
operations. 

The first group treatment of these symmetries was 
given by Buxton, Eades, Steeds & Rackham (1976). 
By identifying reciprocity with colour reversal they 
obtained 31 'diffraction groups', isomorphous with 
the 31 Shubnikov (1964) groups for plane figures. 
Buxton et al. gave a space-group-determination pro- 
cedure in which identification of crystallographic 
point group was made through association with the 
'diffraction group' of the pattern. However, the sub- 
sequent determination of a space group has, until 
now, required identification of absences and hkO 
extinctions as a separate exercise. 

2. Tabulation 

In the present tabulation we identify the 31 BESR 
(Buxton, Eades, Steeds & Rackham) groups, listed 
in column 4 of Table 2, as the point-group component 
of the original Alexander & Hermann space groups. 
These latter then provide us with an 80-member 
classification system for CBED patterns which 
includes the main extinction characteristics, and from 
which the identification of space group is relatively 
straightforward. We endeavour in Table 2 to give a 
logical space-group ordering, and an explicit group 
nomenclature, so that the space-group symbols for 
G 3 (Vainshtein, 1981)* serve both to identify the 

* We have adop ted  Vainshtein 's  notat ion for  partially per iodic  
groups,  GT, where n gives the dimensional i ty  of  the space in which 
the group  is defined and t the dimensional i ty  o f  the per iodic  lattice 
componen t .  
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Table 2. Tabulation of the 80 members of the layer space-group system G32 together with the interrelating 
members of the three-dimensional space-group system G] 

The code for the subheadings is as follows: S - K  No.  refers to the group-number system given by Shubnikov & Kopstik (1974); H - M  refers to the 
Hermann-Maugin nomenclature; ~o,, ~0,, and ~0o are the symmorphic, non-symmorphic and asymmorphic subdivisions of the space groups, respectively. 

230 G]  
System System 

Space group Point group 
S - K  H - M  B E S R  

No. No. 

Oblique 
I I I I 
2 3 i 2 R 

3 5 12 2 
4 2 Im I R 
5 4 Im I R 
6 6 2/ra 21R 
7 7 2/ra 21 a 

Rectangular 
8 14 21 m R 
9 15 21 m R 

10 16 21 m R 
II 8 ml m 
12 10 ml ra 
13 12 ml m 
14 17 12/m 2Rmm R 
15 18 12/m 2amra R 
16 20 12/m 2Rram R 
17 21 12/ra 2Rmm R 
18 19 12/m 2Rmm R 

19 37 222 2mam R 
20 38 222 2mRm a 
21 39 222 2mRm R 
22 40 222 2mRm R 
23 22 ram2 2ram 
24 24 ram2 2tara 
25 26 ram2 2ram 
26 28 tara2 2mm 
27 9 2ram ml R 
28 II 2ram ra l R 
29 33 2ram ml R 
30 30 2ram ml R 
31 35 2ram ml R 
32 32 2mm ml R 
33 31 2mm ml R 
34 34 2mm ml R 
35 13 2ram ral R 
36 36 2ram m l R 
37 23 mmm 2mini R 
38 25 mmm 2mini R 
39 27 mmm 2mm I R 
40 46 mmm 2mm l R 
41 45 mmm 2mini R 
42 43 mmm 2mm I R 
43 47 mmm 2mini R 
44 44 mmm 2mm l R 
45 41 mmm 2mini R 
46 42 mram 2mini R 
47 29 mmm 2mm 1R 
48 48 mmm 2mm I R 

~s 

PI 
P i  

PII2 
P l l m  

P112/m 

PI21 

C121 
P l m l  

C i m l  
P I 2 / m l  

C I 2 / m l  

P222 

C222 
Pmm2 

Cram2 
P2mm 

C2mm 

Pmmm 

Cmmm 

80 G~ 

Space group 
H - M  

P I I b  

P I I 2 / b  

Pl211 

P l a l  

P l 2 J m l  
P I 2 / a l  
P I 2 t / a  

P2a22 
P2,212 

Pbm2 
Pba 2 

P21am 
P21ab 
P21 ma 
P21mn 
P2mb 
P2aa 
P2an 

C2mb 

Pbma 
Pbam 
Pamb 
Pbaa 
Pmma 
Pmmn 
Pbmn 
Pmaa 
Pban 

Cmma 

Proposed 

PI 
131 

P2 
PI, m 

/52, m 

P I , 2  
PI, 2 I 

C I , 2  
Pm 

Pa 
Cm 
Prn, 2 

Cm, 2 

P2, 22 

C2, 22 
P2mm 

C2rnm 
Pm, 2m 

Cm, 2m 

/52mrn, m 

C2mm, m 

/5m, 2j 
/54,2 
/5a, 2t 

P2, 212 
P2, 2~21 

P2mb 
P2ab 

Pa, 21m 
Pa, 2jb 

~52rob, 21m 
/524b, 2j m 
/52am, 2tb 
/52ba, 2ta 

~oa 

PI,  b 

/52, b 

Pro, 210 
Pm, 2tn 
Pm, 2b 
Pa, 2a 
Pa, 2n 

Cm, 2b 

/52ram, a 
~52tara, n 
~52tab, n 
/52am, a 
/524b, n 

C2mm, a 

IT Nos.  

Triclini¢ 
I 

Monoclinic 
3 4 4 4. 5 4 
6 4 8 4 
74 J 94 

104[ II 4, 124 
134, 144, 154 

621 7, 82 
72 ] 92 

,0 
I I  14 
13 2] 15 2 
14 2] 
12 ] 15 

Orthdrhombic 
16 17; 21, 22: 195, 196 
17: i 83; 203 
18 19:19._.88 
21 20; 23, 24: 197, 199 
25 26, 27; 38, 39, 42 
28 293, 30, 313; 40, 41 
32 33, 34; 43 
35 36, 37; 44, 45, 46 
25: 284; 353, 423 
26: 314 
29:333 
26: 294; 363 
31:335 
28 ~ 325, 403 
27: 303; 373 
30' 343 ; 433 
38' 404; 443, 464 
39' 414, 453, 463 
47 49, 515; 653 , 673 , 69:200,202 
51:535 , 57, 593; 635 , 645 
55 58, 626 
57' 606, 612, 622:20_._.55 
54: 52, 563, 605 
51 54, 55 ~. 573; 633, 643 
59 56, 624 
53 525, 585, 60 
49 505, 53, 544; 663, 684 
50 523, 48, 70:201,203 
65 63, 66, 72, 743, 71:204 
67 64, 68; 725, 74, 73:206 

group and to describe the predicted CBED pattern 
character. 

Hall (1981) introduced an explicit matrix-based 
nomenclature for the 230 space groups of G 3, defini- 
tive in both real and reciprocal space. Although we 
are following Hall's basic ideas in using matrix-based 
symmetry symbols, our application differs from Hall's 
in several ways. Firstly, we are interested in charac- 
terizing a diffraction pattern rather than a unit-cell 
origin, which helps to simplify the nomenclature. 
Furthermore, there is an additional need to separate 
'direct' and 'indirect' symmetry element symbols. This 
is done in columns 7 to 9 of Table 2, headed 'proposed 
symbols', by the use of a comma (,) to separate these 

categories, with direct elements coming before the 
comma. Groups having only direct symmetries have 
no comma in the symbol and therefore have a symbol 
identical to the Hermann-Maugin symbol in columns 
5 and 6 of Table 2; they represent the monochromatic 
or 'black' groups in colour-group nomenclature. In 
addition we have adopted two of Hall's symbols, 
namely a bar above the lattice symbol (as in P and 
C) to indicate centrosymmetry and primed symbols 
(as in m" and 2") to indicate diagonal as distinct from 
axial settings of specific elements. Since our main 
aim is to characterize diffraction groups, the primed 
symbols above are always used to indicate a diagonal 
setting in diffraction space coordinates. This 
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Table 2 (cont.) 

System 
Point group 

S-K H-M BESR 
No. No. 

Square 
49 50 4 4 
50 51 4 /m  41R 
51 57 4Ira 41R 
52 55 422 4mnm R 

53 56 422 4mnm n 
54 52 4ram 4ram 
55 59 4ram 4ram 
56 53 4/ ramm 4mini n 

57 58 4 /mmm 4ram I R 
58 62 4/mmm 4mm I R 

59 63 4 /mmm 4mm I u 
60 49 d, 4 R 
61 61 42m 4Rmm u 
62 64 ~,2m 4nmm a 
63 54 ~,2m 4Rrnmt~ 

64 60 ~,2m 4Rmm u 

65 65 3 3 
66 67 3 6 R 
67 72 32 3m u 
68 73 32 3mt~ 
69 70 3m 3m 
70 68 3m 3ra 
71 74 6ram 6nmm u 
72 75 6mm 6atom n 

73 76 6 6 
74 66 6 31 n 
75 80 622 6mRm n 
76 78 6ram 6ram 
77 77 6/m 61R 
78 79 6/ mmm 6mini n 
79 71 6m2 3ml n 
80 69 6m2 3ml n 

~s 

P4 
P4/m 

P422 

P4ram 

P4/ mmm 

Pa 
P4m2 

Pgl2ra 

P3 
P.3 
P312 
P32 I 
P31m 
P3m I 
P31m 
P3m I 

P6 
P~ 
P622 
P6mm 
P6/m 
P6/ mmm 
P62m 
P6m2 

80 c 3 

Space group 
H-M 

¢p. 

P4/n 

P42t2 

P4bm 

P4/ mbm 
P4mbn 

P4/ nram 

PT~b 2 

p7~2 ~ m 

Proposed 
~O s ~O n 

P4 
/54, m 

P4, 22" 

P4, 2t2" 
P4mra" 

P4abm" 
/54ra?-rf', m 

/54m"ab, 2jm 

P4 
P4ra, 2" 

P~lab, 2" 
PT~rn" 2 

PT~m", 2 I 

P3 
/53 
P3, 2 
P3, 2" 
P3m " 
P3m 
/53ra", 2 
P3m, 2" 

P6 
P3, m 
P6, 22" 
P6mm " 
/56, m 
/56rnm", 22"m 
P3m". 2"m 
P3m. 2m 

/54, n 

/54m"ab, 2n 

/54rara ", 2in 

230 G] 
System 

Space group 

1T Nos. 

Tetragonal 
75 77, 76, 78; 79, 80 
83 84; 87 
85 86, 88 
89 93, 91, 95; 97, 98: 

207, 208, 209, 210; 21 I, 214 
90 94, 92, 96: 212, 213 
99 101, 103, 105: 107, 108 
10( 102, 104, 106; 109, II0 
12" 124, 131, 132; 139, 140: 

221,223; 225, 226; 229 
12~ 128, 135, 136 
12! 126, 133, 134; 141, 142: 

222, 224; 227, 228; 230 
12~ 130, 137, 138 
81 82 
I1.' 116: 119, 120 
I I~ 118: 122:220 
II] 112; 121: 

215, 216, 217, 218, 219 
112 114 

Trigonal 
143 144, 145; 146 
1471148 
1491151, 153 
1501152. 154; 155 
1571159 
1561158: 160, 161 
162 163 
164 165; 166, 167 

Hexagonal 
1681171, 172, 173, 169, 170 
174 
1771180, 181, 182, 178, 179 
1831184, 185, 186 
1751176 
1911192. 193, 194 
189 190 
87 188 

additional clarification is needed in the hexagonal 
system. Otherwise, the symmetry elements have their 
standard international crystallographic meaning as 
3 x 3 matrix operators. 

The symbols given in columns 7 to 9 have the 
advantage that they can be interpreted simply in 
terms of CBED pattern symmetries.* This advantage 
continues beyond the symmorphic group listing, 
~os, (of 43 groups) of column 7. The classification 
system leads naturally to a further subdivision of the 
remaining 37 groups into 'non-symmorphic' and 
'asymmorphic' components, recognizable from the 
group symbol. The first of these, ~p,, refers to groups 
which give extinctions [Gj0nnes-Moodie (1965) 
bands] in the space-group-forbidden reflexions visible 
in the zero-layer pattern. The second category, ~Pa, 
listed in column 9, refers to those groups giving rise 
to patterns that, to the first order in observables, are 
simply centred or halved in a or b; Gj0nnes-Moodie 
bands then only occur through upper-layer interac- 
tions and are generally too weak to identify (see, 

* This follows from the existence of a simple coordinate transfor- 
mation between crystal and CBED pattern space (Goodman, 1984). 
It is not necessary, however, to have these transformations in order 
to visualize the corresponding CBED pattern symmetries. 

however, Ishizuka & Taft0, 1982). In the simplest 
example of this, a in groups 16 and 17 will give 
extinction bands parallel to the a translation, while 
b in groups 5 and 7 will lead (to a first approximation) 
to a halving of the b axis (or a doubling of the b* 
axis).t 

~o,, groups may be identified, without reference to 
experimental conditions, as those groups possessing 
a horizontal glide (',a' ',b' or ',n') and having no 
non-primitive translations additional to those given 
by this defining element. 

(i) Directly related space groups: column 10 

The Hermann-Maugin symbols for the layer 
groups (Holser, 1958) have been retained in parallel 
tabulation in columns 5 and 6, since they give a direct 
lead to the listings in International Tables for X-ray 
Crystallography (1965) and International Tables for 
Crystallography (1983). Column 10 of Table 2 (the 
first column after the dividing line between G 3 and 
G]) gives the IT number of the three-dimensional 
space group from which the particular layer group is 

t In the notation adopted by Tanaka, Sekii & Nagasawa (1983), 
these extinctions are GM bands of types A2 and A3, respectively. 



P. G O O D M A N  639 

Table 3. Layer-equivalent subgroups of space groups 
in G 3 for Pmab (no. 57) and Pbaa (no. 54) 

I T  F u l l  H - M  

n o .  s y m b o l  

P2am, 21b 

574 21 2 t 2 
m a b  

606 21 21 2 
c n b  

612 21 21 21 
c a b  

622 21 21 21 
m n b 

P2ab, 21a 

543 2 21 2 
b a a  
2 2 t 2  

52 
n n a 
2 21 2 l 

563 
H a a 
2 21 2 l 

605 
b n a  

Okl  hOl  h k O  hO0 OkO 001 

[=2n 

1=2n 

h = 2n k = 2n h = 2 n  k = 2n 

h + l = 2 n  k=2n  h=2n  k=2n  

h=2n  k=2n  h=2n  k = 2 n  1=2n 

h + l = 2 n  k=2n  h=2n  k=2n  1=2n 

k=2n  h=2n  h + k = 2 n  k=2n  

k + l = 2 n  h + l = 2 n  h=2n  k = 2 n  

k + l = 2 n  h=2n  h = 2 n  k=2n  l=2n 

k = 2 n  h + l = 2 n  h=2n " k=2n  l=2n 

sectioned (i.e. derived by suppression of the primitive, 
z, translation), which therefore has the same Her- 
mann-Maugin symbol (as that given in columns 
5 and 6). 

Although IT Vol. A has retained the ordering num- 
ber for space groups of earlier volumes, the ordering 
of settings has been changed. Hence, in giving the 
entries of column l0 a numerical superscript (as in 
265 and 263) to denote a non-standard setting, the 
scheme of the later IT Vol. A has been used. This 
superscripted number then corresponds to the column 
number given in Table 4.3.1 to that volume. 

In some cases, alternate settings of the same IT 
space group occur on different rows of Table 2. Hence, 
nine entries in column l0 are generated by a multiple 
listing of the same member of G 3 in alternate settings. 
Therefore there are 8 0 - 9  = 71 distinct space groups 
interrelated directly with the 80 layer groups in 
Table 2. 

It is important to note that the methodology of 
Table 2 relates initially to a principle or maximal- 
symmetry zone-axis setting of a crystal in a particular 
three-dimensional system. This has a unique meaning 
in the tetragonal and hexagonal systems (which will 
be obvious from the table), and the same is true for 
the cubic system, but for the monoclinic and ortho- 
rhombic systems there are three equally valid choices 
for a principal setting leading, generally, to three 
distinct layer-group indexations. 

(ii) Subgroup expansion: column 11 

In order to relate individual layer groups to all 230 
space groups, it is necessary to expand from those 
specific groups entered in column 10, by means of 
subgroup relationships, to the remainder. This means 
including groups which are subgroups of the same 

class in G 3, and in particular those subgroups which 
are not also subgroups in G 3 and hence already listed 
separately in the table. These additional groups, 
appearing as rows of space-group numbers in column 
l l  of Table 2, are referred to as 'layer-equivalent' 
subgroups, one specific example of their derivation 
being given in Table 3. They correspond, collectively, 
to an exhaustive listing of maximal subgroups of type 
IIb (IT Vol. A), and permit access to all non-cubic 
groups. Further extension, to general subgroups 
which include suppression of the defining trigonal 
point-group elements, is required to include the cubic 
space groups. These are included in the rows of Table 
2 in an extension within column 11 as numbers which 
are underlined. 

In this way, Table 2 provides a complete theoretical 
link between the 80 groups of G 3 and the 230 groups 
of G 3. 

3. Application and discussion 

Identification of a crystallographic space group from 
a CBED pattern using Table 2 is therefore a two-stage 
procedure following (i) and (ii) above, which is best 
explained by means of examples. These have been 
chosen from large-unit-cell structures, which are not 
commonly used in illustration of CBED analysis. 
However, the current procedure, which is as depen- 
dent upon identification of characteristic extinctions 
as upon determining symmetries between reflexions, 
works quite as well for these cases as for the more 
commonly illustrated small-unit-cell structures. The 
tetragonal and orthorhombic examples given allow 
the application to be demonstrated in those regions 
of the three-dimensional space-group tables where 
the greatest complexity of non-symmorphic 
expansion exists. 

(1) Tetragonal structure: Rb22Nb540146 (a =27.5, 
b =4.0  •). Fig. l (a)  shows a zone-axis pattern from 
this structure, which is discussed in more detail else- 
where (Olsen, McLean & Goodman, 1983). Since it 
has fourfold axial symmetry it belongs to the square 
system of G 3. Further, since it shows extinctions 
corresponding to h00, h -- 2n (0k0, k = 2n), it belongs 
to the ~0, classification of column 8, with the charac- 
terizer 4ab in the space-group symbol. Fig. l(b),  for 
which the crystal is rotated away from the [001] zone 
axis, shows that only those h00 reflexions very close 
to the Laue circle are extinguished; those near the 
000 reflexion have strong intensity. This is an indica- 
tion, according to the literal interpretation of the 
Gjg~nnes-Moodie (1965) rules (and later supported 
by the other zone-axis patterns of Fig. 2), that the 
horizontal screw axis 2~ parallel to a* is present in 
addition to the vertical glide planes. This observation 
permits only one layer-group indexation, namely no. 
57 or fi4m"ab, 2~m. The space group in G 3 (directly 
linked to no. 57 in G 3) is no. 127, or p4/mbm. For 
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this space group there are three relevant subgroups 
(not already entered as alternative layer groups), 
namely nos. 128, 135 and 136, which are listed in 
column l l  of Table 2. These four groups can be 
distinguished by means of  their extinction conditions 
for Okl and hhl reflexions. Figs. 2(a)  and (b) show 
the alternative zone axes [011] and [014], respectively, 
for the same structure. From these CBED patterns 
we see that the 011 reflexion is extinguished but that 

the 041 reflexion is present and of medium strength. 
This establishes the Okl condition as k -- 2n and rules 
out the alternative condition k + 1 = 2n. Next, it can 
be seen that the reflexions I I l and T 1 l, neighbouring 
the arrowed 011 reflexion in Fig. 2(a) ,  are strong. 
This second observation, on hhl-type reflexions, 
establishes that they are 'allowed' (i.e. hhl: 'no condi- 
tions'). These observations eliminate nos. 128, 135 
and 136 as possibilities, and confirm no. 127 as the 

(a) 

(b) 
Fig. 1. (a)  [001] zone-axis pattern from Rb22Nb54Ol~ , showing 

fourfold symmetry and the systematic extinctions h00 h = 2n + l, 
k00 k = 2n + I. (b) Pattern taken from the same region as in (a),  
but with the crystal rotated from the exact zone-axis setting. The 
centre of  the Laue circle is marked with a cross. At this tilt: (i) 
the h00 reflexions, which are identified by an enclosing ellipse, 
are all present; (ii) the h00 reflexions neighbouring the strong 
12,0,0 and 14,0,0 reflexions and enclosed with a labelled circle 
are extinguished. 

(b) 
Fig. 2. [0 i l ]  and [0i4]_.zone-axis patterns from Rb22Nb54Ol~, 

showing (a)  011, 011 reflexions extinguished and (b) 041 
reflexion present. Note that the spacing of discs along the a* 
line in (a)  and (b) is halved, in accordance with the rule h00: 
h =2n. 
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correct space group. The confirmatory evidence of 
the symmetry element 2~, parallel to a*, referred to 
above, is found in Figs. 2(a)  and (b), since all h00- 
type reflexions, h = 2n + 1, are absent (this is evident 
along the a* lines of the figures). 

(2) Orthorhornbic s t r u c t u r e :  Cu3SbSe3 (a = 10.22, 
b = 7 . 8 4 ,  c = 6 . 6 0 / ~ ) .  The type of CBED pattern 
shown in Fig. 3, belonging to the rectangular system, 
which contains extinction bands along the a* axis 
(h = 2 n  for h00) and also has every alternate line 
extinguished along b* (k = 2n for hkO; this is evident 
in tilted point patterns of the  type shown in Fig. 3(b)), 
implies a non-symmorphic,  column 8, layer-group 
index ~0n for this structure of either 40 (P2am, b) or 
41 (P2ba, b). Without additional data it is not poss- 
ible to distinguish between these layer groups without 

going through the same work as is needed to distin- 
guish between the subgroups in G 3 (listed in column 
11). Thus, the IT space groups listed in row 40 are 
57, 60, 61,62 (ignoring the underlined group 205 from 
the cubic system, which is not a possibility here) and 
those in row 41 are 54, 52, 56, 60 (all in appropriate 
settings). 

Table 3 lists the layer-equivalent subgroups of 
Pmab (no. 40) and Pbaa (no. 41) and serves to illus- 
trate the way in which these are derived. Column 2 
of Table 3 gives the full H-M symbol for the space 
group in the appropriate setting (defined by the super- 
scripted number in column 1). Columns 3 to 9 give 
the appropriate three-dimensional extinction condi- 
tions, collated from the appropriate pages of IT. 
Inspection of this part of the table shows that each 
group is distinctively identified, even when the last, 
or 001 condition (generally inaccessible to a principle 
orientation, by definition), is excluded. 

In this particular case, 62 could be decided as the 
correct space group since the single upper-layer 
diffraction condition found from additional diffrac- 
tion data was hOl, h + l = 2 n  (Whitfield, private 
communication).  

( t l )  

(b) 
Fig. 3. (a) CBED pattern, taken in the JEOL 200CX top-entry 

stage (condensor-focused probe), from the [001] zone axis of 
Ge3SbSe3, showing extinction bands along the a* axis in the 
odd-order reflexion discs indicated (see text for Moodie & Whit- 
field reference). (b) A tilted point diffraction pattern taken so 
as to show parts of both the zero- and first upper-layer reflexion 
zones. Additional lines appearing in the first upper-layer zone 
demonstrate that b* is halved in the zero-layer pattern (see text). 

4. Additional comments on the proposed symbols 

Since the symbols given in columns 7 to 9 of Table 
2 are proposed ones only, some modifications may 
be found desirable after some use, but the following 
additional comments suggest themselves. We have 
not tried to give a minimum set of elements, but rather 
to give a sufficient number  for identification purposes, 
and approximately in order of importance for CBED 
identification. Centrosymmetry,  for example, which 
is a very important property for CBED work, is 
immediately indicated. On the other hand, use of the 
prime (') to indicate diagonal setting would lead to 
confusion since it is used in Shubnikov's nomen- 
clature to indicate formal anti-symmetry; hence the 
alternative Hall double prime (") is better, though it 
is never possible to avoid overlapping some other 
nomenclature in some respect. With respect to the 
explicit distinction between direct and indirect 
operators, the alternative of using subscripts v and h 
on the symmetry symbols, as is commonly done in 
the Schoenflies space-group symbols, to represent the 
vertical and horizontal elements was also considered, 
but the present proposal was fnal ly  adopted for 
reasons of compactness, and ease of hand writing 
and type-setting. Finally, a shortened version of these 
symbols, which may well prove the more usable, is 
readily derivable from the fully-descriptive symbols 
listed. 

The author wishes to thank A. F. Moodie and H. 
Whitfield for suggesting the use of Fig. 3, from their 
recent work (Moodie & Whitfield, 1984), as an 
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gratefully acknowledged.  Finally, I am indebted to 
Drs A. F. Moodie ,  A. W. S. Johnson,  A. C. Hurley 
and Professor  Dr  Th. Hahn  for their collective careful 
and critical reading of  the original manuscript .  
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Abstract 

Orientation relationships between two crystal lattices 
are frequently specified in terms of parallel directions 
and planes in each lattice. The corresponding matrix, 
relating the vector bases of the lattices, can be 
obtained by a general method involving the metric 
matrices of the two lattices and the crystallographic 
indices of parallel planes and directions. Equivalent 
matrices can be defined by changing the lattice bases: 
different selections of the invariants of such matrices 
are indicated. Finally, criteria for choosing the 'best' 
matrix relating the two lattices are discussed in the 
context of phase transformations and of interfacial 
structure. 

1. Introduction 

There are various situations where it is of interest to 
specify the relative orientation of two crystal lattices; 
for example, when the two crystals meet at an inter- 
face or when one of the crystals is phase transformed 
into the other. Frequently, the relative orientation is 
defined by indicating the crystallographic indices of 
planes or directions, in each lattice, that are parallel 
to each other. The possibilities are: two pairs of 
parallel directions; two pairs of parallel planes; one 
pair of directions and one pair of planes, this being 

0108-7673/84/060642-04501.50 

the more commonly used. However, the most con- 
venient and formally simpler way of specifying the 
relative orientation of two lattices with bases (el, e2, 
e3) -= (e) and (el, e~, e~) - (e'), respectively, is in terms 
of the 3 x 3 matrix X that relates the two bases: 

[el e~ e~] = [e, e2 e3]X (1) 
or  

e'= eX. (2) 

In these equations, [el e2 e3]----e is tO be regarded as 
a row matrix. When the orientation matrix X is 
known, one can determine the angles between any 
directions or planes in the two lattices and find a 
correlation between the lattices in terms of the 
product of a pure rotation and a pure deformation 
(e.g. Christian, 1975). One can also study the possibil- 
ity of coincident points between the two lattices and 
whether such points define a three-, two- or one- 
dimensional lattice and determine the degree of 
coincidence in each case. Methods of solving these 
problems have been developed by Grimmer (1976) 
and Fortes (1983b). Finally, it is possible to determine 
the 0-lattice from the matrix X (Bollman, 1970) and 
calculate the misfit dislocation content of an interface 
between the two crystals (Bollmann, 1970; Knowles, 
1982). 
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